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Numeric precision In FORTRAN computing
Roger W. Meredith
NA VAL Research Laboratory-Stennis Space Center Detachment, Arctic Acoustics Branch, Code 242,
Stennis Space Center, Mississippi 39529

(Received 23 October 1990." accepted for publication 13 April 1992)

This article compares both real and complex outputs from sizeable numeric computations
using identical code on several computer systems. The digital signal processing technique
known as the modified covariance method was used as the computational engine. It is a
recursive algorithm for solving the covariance equations of a linear predictor that seeks to
predict an input signal by a linear combination of past signal samples. Single precision and
double precision results are presented but the study focuses primarily on differences between
the VAX Fortran 4.8 and MacFortran/020 compilers. Differences in the first digit for single
precision arithmetic were found and double precision differences occurred in the eighth digit.
Arithmetic with complex data types was found to be less precise than with real data types.
Although differences exist among various computer systems, they all show the same order of
magnitude accuracy with respect to CRAY-YMP results. The algorithm used here required a
double precision implementation to obtain agreement between different computer systems.

musTROiUCTIO careful implementation and extensive testing beyond just
d numeri- getting the example results. Examples with differences in

Presently, personal computers have the speed and a the first digit for single precision arithmetic are given and
cal precision of mainframe computers from a few years ago. double precision differences in the eighth digit occur. Al-
For example, the Macintosh SE030 that I use is a full 32-bit though this article explores differences in output betweenthoughnthispaoiicle exploresldifferencesUinaoutput betwee
machine exploiting a Motorola 68030 CPU, a 68882 float- computer systems, the results reported here apply only for
ing point coprocessor, and a paged memory management this single example. These results are not necessarily typi-
unit. The data bus is 32-bits and the reference clock speed is cal of other numerical examples or even different input
16 (MHz). Because of significant increases in desktop ca- data for this subroutine.
pability, numerically intensive FORTRAN codes are now be-
ing transported from mainframe to desktop computers.

This article compares single precision and double pre-
cision outputs from identical code on several computer sys- 1 THE MODIFIED COVARIANCE METHOD
tems but focuses primarily on differences between VAX
Fortran 4.8 and MacFortran/020. The task that led to this The modified covariance method was chosen to compare
investigation was the implementation of digital signal pro- numerical results from the different compilers. This meth-
cessing programs on a Macintosh. I wanted a research tool od, a recursive algorithm for solving the modified covari-
that would perform complex transforms on data using a ance equations of a linear predictor, is explained in detail
Fourier transform method, an autoregressive method, and by Marple.' A linear predictor seeks to predict the input
a linear predictor method. These methods are commonly signal by a linear combination of past signal samples. The
used, well documented, and FORTRAN subroutines are example in the book employs a model of order 15 for the
readily available. The linear predictor solution named the number of recursions and the input data are the 64-element
modified covariance method was chosen from the book by complex data series, given in the book's Appendix. The
Marple.' The implementation of this code using MacFor- output from this code is a real number and a complex array
tran/020 did not match the book's example output. How- of length equal to the model order. For the book example,
ever, the same code implemented in VAX Fortran 4.8 did the routine performs over 2300 multiplications and addi-
match. This was surprising since past experience with tions. For each recursion, the real variable and all elements
codes executed both in VAX Fortran and in MacFor- of the complex array are computed and there are no direct
tran/020 generally agreed to 4-6 digit accuracy. calls to transcendental functions.

For the example discussed herein, the single precision Since the book code utilized single precision arithme-
output differences are large and show that output from the tic, minor modifications were necessary to convert data
same code on different computer systems does not always types and arithmetic to duuble precision real and duublc
agree. This example indicates that computer codes need precision complex. What is reported here is differences and
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relative errors of each computer system with the CRAY when converted to double precision goes to
results for single precision example and with the VAX re- 0.33333331314651184 not 0.3333333000000000 or
suits for the double precision example. 0.33333333333333332.

L REDIG SEQUENTIAL DATA FILES IN. DATA TYPES
Read (*,*) is a convenient method for reading data from a The VAX Fortran 4.8 compiler2 claims seven digit preci-
sequential file when the field format is unknown. This list- sion for single precision real numbers. The double preci-
directed read is implemented differently in the VAX For- sion default is the D - floating option that claims 16-digit
tran 4.8 and MacFortran/020 compilers. This can cause precision. The G - floating option claims 15-digit accura-
processing differences because it affects the number of sig- cy but has extended range. The VAX results presented here
nificant digits in the data. Generally, MacFortran/020 will all used the D - floating option for higher precision. The
read six significant digits while VAX Fortran reads seven. MacFortran/020 single precision also claims 7 -digit preci-
To eliminate this difference and focus on numerical com- sion3 and double precision claims 15-digit precision. The
putation, the data were read with F7.5 format. Still, differ- coprocessor carries calculations and intermediate results
ences in the input data remain. Table I is the F7.5 read from to 80-bit precision.
both systems. For brevity, just the real parts of the complex Macintosh provides its own numeric environment
input data are shown. The values have nine decimal places called SANE4 that implements the IEEE 754 floating point
but are read using an F7.5 format and printed out using the arithmetic standards. SANE provides a 15-bit exponent
list directed format. VAX Fortran manipulates the preci- and a 64-bit mantissa. Even though the MacFortran/020
sion of certain input values. This I/O difference does not does not use the SANE environment, it does conform to the
occur when reading into double precision numbers since IEEE 754 standard. The Macintosh 68881 math coproces-
both compilers read 16 digits. VAX Fortran still manipu- sor option was used in MacFortran.
lates precision if all 16 digits are not filled. The VAX em- Table II summarizes the different single and double
ploys other methods to control computation errors as well. precision floating point representations for the VAX For-
For example, conversions to other data types are not al- tran and MacFortran/020 systems. In the following com-
ways what one might expect. The real number 0.3333333 parisons, results from a CRAY-YMP using CFT77 version

3.0, are used as the standard for comparing both the single
precision and the double precision real data type results.
Since CFT77 does not support a double precision complex
data type, CRAY results were not used in the double preci-
sion complex comparisons.

TABLE 1. Comparison of data input in F7.5 format.

MacFortran/020 VAX Fortran 4.8 IV. SINGLE PRECISION RESULTS

1.349 0.404 1.349 0.404 Two additional computer systems are included for com-
-2.117 1.293 -2.117 1.293 parative purposes. These are a SUN SPARC workstation,
- 1.786 -0.119 - 1.786 -0.119 with OS version 4.0.3, and a Silicon Graphics Inc. (SGI),

1.162 -0.522 1.162 -0.522 IRIS-4D-220 minicomputer, with OS IRIX 3.2.1. Real
1.641 - 0.974 1.641 - 0.974

0.072 0.275 0.071999997 0.275 and complex output from the modified covariance method
- 1.564 0.854 - 1.564 0.854 from these systems are compared with the output from the
- 1.08 0.289 - 1.08 0.289 CRAY. Although not shown, the results from a Compaq

0.927 - 0.283 0.927 - 0.283 386 PC using Microsoft Fortran 4.1 agreed exactly with the
1.891 - 0.359 1.891 - 0.359

- 0.105 0.102 - 0.105 0.102 MacFortran/020. In the following discussion, the relative
- 1.618 -- 0.009 - 1.618 - 0.0089999996 error with respect to the CRAY output are reported as
- 0.945 0.185 - 0.945 0.185 results. The relative error is determined by the difference in

1.135 -0.243 1.135 -0.243 output from the CRAY and the other computer system,
1.855 -0.27 1.855 -0.27

- 1.032 0.399 - 1.032 0.399 then the difference is divided by the CRAY result,
- i.571 -0.25 - 1.571 -0.25 (ICRAY--Other systemj )/CRAY. Thus, if the absolute
-0.243 0.419 -0.243 0.419

0.838 -0.05 0.838 - 0.050000001
1.516 -0.395 1.516 -0.395

0.257 0.746 - 0.257 0.746
-2.057 - 0.559 2.057 - 0.559
-0.578 - 0.344 - 0.578 - 0.344 TABLE I1. Comparison of FORTRAN floating point representation.

1.584 0.733 1.584 0.733
0.614 - 0.48 0.614 - 0.48 System Mantissa bits Exponent bits

-0.71 0.033 -0.71 0.033
- 1.1 - 0.321 - 1.1 - 0.321 CRAY-YMP single precision 47 15

0.15 - 0.063 0.15 - 0.063000001 VAX single precision 23 8
0.748 1.239 0.748 1.239 VAX D - floating double precision 55 8
0.795 0.011 0 79, 0.082999997 VAX G - floating double precision 52 1I

-0.071 - 0.762 - 0.071000002 - 0.762 MAC single precision 23 8
- 1.732 - 0.895 - 1.732 - 0.895 MAC double precision 52 II
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difference is small, and hence the relative error is small, bit computations versus 48-bit computations. Because of
then the result from that computer system agrees with the this and the large span of differences, the graphs tend to
CRAY result. Relative error is more magnitude indepen- overlap each other. For lower model orders, only the last
dent than differences. However, since the numbers being plotted symbol is visible as it plots over the others. By mod-
compared should be nearly equal, the relative error can be el order 12 the differences are sufficient to be individually
deceptively severe. Therefore, the following plots show rel- discernible.
ative error and differences. Figure 1 (b) shows the relative error for the real part

The single precision results are shown in Fig. 1. The of a complex number and Fig. 1 (c), the imaginary part.
relative error for the real data type is shown in Fig. l(a) as The real part shows a linear increase in relative error to
a function of model order number which represents the model order 10, then a large error at model order 11, fol-
number of recursions used to obtain results. The relative lowed by a smaller errors with a larger linear slope. The
error is negligible out to model order ten for all four com- imaginary part, Fig. 1 (c), shows a smooth but increasing
puter systems. Above ten relative error increases dramati- error out to model order 10, then larger errors. The relative
cally up to 60%. The differences (Cray--other system), errors for the real part are noticeably different from the
although not shown, show the same trend. Differences in imaginary part.
the second decimal place begin at model order 1 and, by In terms of differences, the real part of the complex
model order 13, differences occur in the first decimal place. number, Fig. 1 (d), starts near zero, peaks at model order 6,

The differences between the VAX, MAC, SUN, and and returns to near zero. The differences in the imaginary
SG1 results are small compared to the difference of any of part, Fig. 1 (e), appear to be the mirrored reflection of the
these systems with the CRAY due to the deficiency of 24- real part. Starting near zero, the differences dip and return

Single precision results 10,00o
0.70 (a) Real number 

0

0.60o I 8.00- o
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0.50 a c 6.00-
-o- MAC

0.40 •
S-UN i5 4.00-

': 0.30- Z=.SGI 2.00-

0.20 0

0.00. o0.10, g a
oA (d I Real part

0.00 - - - -- 20
0 4a468 10 12 14 16

6.00
1b) Real part * 0.00 - o

5.00 aa

* -2.50 a
S4.00- So0

00

00

: 3,-5.00

2.00 -7.50 •
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FIG. I. Comparisons of single precision FORTRAN results with respect to
0 00the CRAY from four computer systems for two data types. (a) Real data> 1.00.

6a type relative error: (b) real part of a complex number relative error: (c)~~0cco imaginary part of the -oinplex number rclati•.c erroi. kd ; real part ofl a

050. 0 0 complex number difference; and (e) imaginary part of the complex num-
"0 ber difference. Because the differences are ,mall among the four comput-

S2 0 ers are small, the plotting symbols tend to overlap.
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TABLE I11. Single precision results averaged for 15 model orders. indicating that numeric errors associated with the division
in computing relative error may be the cause of error at this

Average difference (CRAY--other system) particular model order. It is interesting to note that this
Complex number occurs only for the real part of the complex number.

System Real number Real Imaginary Table III gives the average difference with respect to

VAX - 0.02 3.21 - 4.91 the CRAY result by averaging over model order. Averag-
MAC - 0.02 3.02 -4.67 ing determines which system gives better overall agree-
SUN -0.02 3.10 -5.09 ment with the CRAY result. All four computer systemsmatch the CRAY result to the same order of magnitude.

Average relative error
VAX 0.09 0.86 1.88
MAC 0.09 0.81 1.79 V. DOUBLE PRECION RESULTS
SUN 0.10 0.81 1.94 Figure 2 is similar to Fig. 1 but shows double precision
SGI 0.10 0.82 2.05 results with respect to the VAX using a D - floating op-

tion. The relative errors are given in Fig. 1 (a), for the real
number, Fig. 1 (b) for the real part of the complex number,
and Fig. I (c) for the imaginary part of the complex num-

to zero. As a function of model order, when differences ber. The differences with respect to the VAX output are
occur in the real part, they also occur in the imaginary part. shown in Fig. 1 (d) for the real part of the complex number,
It is not clear whether the difference dependence on model and Fig. 1 (e) fol the imaginary part of the complex num-
order is primarily a result of numeric errors or the input ber.
data used in the method. The differences do not show the Figure 2(a) shows the relative error with respect to
large error at model order 10 that the relative error shows, the VAX fat the real number data type. The relative error is

2E-9 Double precision results 5E-91E-9 Real ~nuber0 (d) Real par

-.- MAC -8E-28 • U

IE-9 -o SUN 0 U

SGI .5E-9
8E-10 0- 0

cc 5E-10 - * -1E-8 o a•

3E-10 0

OE- -2E0
OE - -" -2'8 2 4 6 8 10 1'2 1'4 16

0 2 4 6 8 10 12 14 16

8E-9 3E-8
(b) Real part (e) Imaginary part 0

6E-9 2E-8 0

S• 2E-8' -

>•4E-9 5D • •00
I E-8-

269•0: 0' 1E-8 *0

2E-9 5li g g g £ g g : • • • =5E-9 -"

OE÷0 OE+.0 - .
0 2 4 6 8 10 12 14 16 0 2 6 8 10 1'2 14 16

1E-7 Model Order Number

(c) Imaginary part

8E-8 0

S6E-8 FIG. 2. Comparisons of double precision FORTRAN results from three
computer systems with respect to the double precision VAX result. (a)S• 8Real nuriiber rclative error: (W) real part o1 a complex :mimber relative

, tE 8 -error; (c) imaginary part of the complex number relative error; (d) real
part of a complex number differences; and (e) imaginary part of the com-

2E-8 plex number differences. Because the differences are small among the
three computers are small, the plotting symbols tend to overlap.

OE+O - - . _
0 2 4 6 8 10 12 14 16

Model Order Number
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TABLE IV. Double precision results averaged for 15 model orders. 13 decimal places. For model orders greater than 12, differ-
ences begin to increase.

Average difference (VAX--other system) Figure 2(b) is the relative error for the real part of the
Complex number complex number and Fig. 2 (c) the imaginary part. For the

System__ Realnumber _Real_ Imaginary_ real part, the relati, e error increases linearly up to model
MAC 3.132E-1 1 - 4.106E-9 6.292E-9 order 10. After model order 10, the differences among the
SUN 5.138E-! 1 -- 5.222E-9 1.140E-8 other computer systems is more easily discernible and ex-
SGI 3.973E-1 1 - 4.3 18E-9 8.714E-9 hibit a general agreement with the single precision real part

Average relative error results. The imaginary part is different than the single pre-
MAC 9.191E-1i 1.103E-9 2.404E-9 cision counterpart in that it exhibits some large error for
SUN 1.509E-10 1.243E-9 4.269E-9 model order 11. The differences in Fig. 2(d) and (e) do not
SGI 1.168E-o10 1.064E-9 3.274E-9 show this, so this spike is believed to be a numeric division

problem in computing relative error.
Differences for the real part of the complex number,

negligible out to model order 10 for all three computer Fig. 2 (d), start out near zero, dip, then return to near zero.
systems, then the relative error increases dramatically for As in the single precision case, the differences in the imagi-
the higher model orders. The differences, although not nary part, Fig. 2 (e), appear to mirror the real part in both
shown, do show the same trend. For model orders less than magnitude and model order: starting near zero, peaking,
11, the double precision real number differences are zero to and returning to zero. The dependence on model order for

Original Input sequence
2E-8 3E-10(a) Real number (d) Real number

1E-8 2E-10

S1E-8 a E-O

8E-9 * * a , ,
o OE+O *... " Ole

c- 5E-9 "

-IE-I0
3E-9 •.
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bI Real pan (e) Real part
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8E-7

o 8 4E-7
& 6E-7 - Sate

* = 2E-7 •

C 4E-7 OE+O •. a a..

2E-7 - -2E-7

OE+ --- , ao -4E-7
o 1o 20 3o 40 so 0 10 20 30 40 50

8E-7
(cW nlmginaY Pan

6E-7 - = ••

8E-7 
6

0 • 4E-7 •
S6E-7 a a a

a . 2E-7 -

,r 4E-7 • -OE+O ••• U . •

2E-7 • a a -2E-7 U

S• t..a a (f-4E-7 IfI imaginary partOE+O ,- -- --- 47

0 1o 20 30 40 o0 0 10 20 30 40 50

Model Order Number Model Order Number

FIG. 3. Comparisons of double precision relative errors and differences for the VAX Fortran 4.8 and MacFortran/020 for higher mode) orders. (a) Real
data type; (b) real part of a complex number; (c) imaginary part of the complex number; (d) the relative difference for the real number; (e) relative
difference for the real part of a complex number; and (f) relative difference for the imaginary part of the complex number.
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the imaginary part looks like the mirrored reflection of the 2avwud input squence

real part.E-8
Table IV compares the double precision relative error (a) Relumber

and differences for each computer system averaged over all ZE-8
15 recursion steps. Table IV shows that the VAX floating
point representation, although having three more bits in .
the mantissa does not provide significantly better results 1 E-8

than the other systems. The double precision differences
among the computers are small. 5E-9

VL L ME U K m E SuS 0E+0 ---------- --- '"a".a ....... m "'""

To check consistency in the differences between the Mac- 0 10 20 30 40 50

Fortran/020 and VAX Fortran 4.8, and to see how large (bi Real part
these differences might grow, another case was examined.
This case used the same input data, full double precision, 8E-7
and a higher model order, 41 instead of 15. This gives over
13 000 total multiplications and additions. To compare .- 6E7
double precision relative errors and differences at higher
model orders, the VAX is used as the standard. Figure 3 4E-7

shows the relative errors and differences for both real and a.

complex data types. 2E-7 a

For the real data type, Fig. 3(a), the relative error * **.. u

shows two local maxima near model order 15 and 22, but is OE+0 N"" M .
small out to model order 30. Above model order 30 the 0 10 2o 30 40 50
error grows. It is noted that similar differences with respect
to the Cray result also occurred near model order 15 [ Fig. I E-6 -C) Imaginary part

2 (a) ]. The complex data type clearly shows less agreement
between the VAX and Mac result than the real data type. 8E-7

The real part shows some severe relative errors, one near
model order 9, one is offscale at model order 15, and near • 6E-7

28 and 35. The imaginary part also has a spikey nature with
large relative errors near model order 12, 20,22, 30, and 35. 4E-7 -

The real data type shows some disagreement between the
relative error, Fig. 3(a), and the relative difference, Fig. 2E-7 *-

3 (d). When the difference is large, near model order 15 and 3 M
22, the relative error is small. When the relative error is oE+o .
large, near model order 40, the difference is small. The 0 10 20 30 40 50
complex number shows better agreement between the rela- Model Order Nufter

tive error, Fig. 3(b) and (c) and the relative difference, FIG. 4. Comparisons of double precision relative errors with the input
Fig. 3 (e) and (f). data reversed. (a) Real data type; (b) real part ofa complex number; and

"In terms of differences, the VAX and MacFortran/ (c) imaginary part of the complex number.
020 agree out to ten decimal places up to model order num-
ber 12. Both the real and imaginary parts show differences
in the seventh decimal place for model orders less than 10;
however, the imaginary part, once again, seems to mirror standard for single precision comparisons and the VAX for
the real part. These double precision results suggest that double precision comparisons. It is impossible to assign
complex data types have less arithmetic precision for than differences reported here solely to compiler differences.
real data types: • " The roles of the hardware, input data conversions, and the

In an att&Aptlb OlimiaYt the effect of input data, the recursion method are difficult to separate. It was shown
sequer~ce of thejpit data was reversed and the program that sometimes computer codes need more extensive test-
executed with a model ogj4 41. This relative errors are ing than simply obtaining the published answers. In this
shown in Fig. 4 anrJ t~ iitudes are basically the same. example, double precision implementation is required to
However, theolireopns" are, reversed, when one ordering achieve satisfactory agreement between different computer
causes a positive difference, the other ordering gives a nega- systems out to large model orders.
tive difference. Thus the input data sequencing does not Arithmetic with complex data types, especially for
play an important role in the level of accuracy and preci- large computations, is shown to be less precise than for real
sion of these result.A. " data types. VAX Fortran 4.8, MacFortran/020, SUN, and
VL 60 " SGI results all show the same precision with respect to
:.I CRAY results. The differences among them are an order of
Small differences occurred in numeric results from various magnitude smaller compared to the difference with the
computer systems. The CRAY results were used as the CRAY results. In this example, MacFortran/020 single
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precision is slightly closer to CRAY results than the VAX ACKNOWLEDGMENTS
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